
rabbitsign(1) rabbitsign(1)

NAME
rabbitsign − sign applications for TI graphing calculators

SYNOPSIS
rabbitsign [options] [-o appfile] [-k keyfile] hexfile...

rabbitsign [options] [-k keyfile] -c hexfile...

DESCRIPTION
rabbitsign is an implementation of Texas Instruments’ Rabin and RSA signing algorithms, as used on the
TI-73, TI-83 Plus, TI-84 Plus, TI-89, and TI-92 Plus graphing calculators.These algorithms are used to
sign Flash applications and operating systems so that the calculator can recognize them as valid.

rabbitsign, like Texas Instruments’ official signing programs, needs a private key (a pair of large prime
numbers) to sign apps. In order for the app to be accepted, the corresponding public key (their product)
must be present on the calculator. As of this writing, the ‘‘shareware’’ private key number 0104, used for
signing applications for the TI-83 Plus and TI-84 Plus, is available through TI’s SDK. Unfortunately, the
OS signing keys, as well as the app signing keys for the TI-73, TI-89, and TI-92 Plus, have not been
released, which means that only TI can sign apps and OSes for those calculators.

OPTIONS
-a Attempt to match the output of Peter-Martijn Kuipers’ appsign program, for testing purposes.

The resulting output file will have Unix-style line termination, and hence will not be compatible
with all programs. This option is not recommended for ordinary use.

-b Assume input files are raw binary files. If this option is not given, the file type is detected auto-
matically.

-c Do not sign apps; instead, check that the signatures of the specified apps are valid. Exit status is 0
if all apps are valid, 1 if one or more apps fail, or 2 if there is a non-mathematical error.

-f Ignore non-fatal errors, and force the application to be signed if possible.(All of these messages
are there for a reason, though, and chances are that if your app generates any of them, it will also
either fail validation or crash the calculator. You have been warned.)

-g Write the output file in GraphLink ‘‘TIFL’’ f ormat. (Bydefault and for historical reasons, apps
and OSes for the TI-73 and TI-83 Plus are written in plain TI Hex format instead; you can use
packxxk(1) to convert these files into TIFL format.) Apps and OSes for the TI-89 and TI-92 Plus
are always written in TIFL format. SeeAPPLICATION FILE FORMATS below for more
information.

-k keyfile
Read signing and/or validation keys from the given file. Thisfile must be in one of the formats
used by TI’s SDK tools. (SeeKEY FILE FORMATS below.) By default, rabbitsign searches
for the key named in the app header (for example, 0104.key for ‘‘shareware’’ T I-83 Plus apps.)

-K id Search for the key with the given id (a small hexadecimal number) rather than the ID specified in
the app header.

-n Attempt to sign the program as-is, without modifying the header. (This option may not produce a
file that the calculator will actually accept; it is intended for testing and special-purpose signatures,
not for ordinary app signing.)

-o outfile
Specify the output file.By default, output files are named by taking the name of the input file,
removing any suffix, and adding a ‘.app’ or ‘.8xk’ suffix depending on whether-g is specified.(If
the input file already has a ‘.app’ or ‘.8xk’ suffix, ‘-signed’ is inserted, so ‘myapp.8xk’ becomes
‘myapp-signed.8xk’.)

RabbitSign 2.0 July 2009 1

rabbitsign(1) rabbitsign(1)

If ‘-’ is specified as an input file, that indicates the standard input, and the signed result is written
by default to the standard output.

-p Fix the app pages header. This is not done by default because an incorrect pages header is gener-
ally a sign of a much more serious problem.

-P If the application ends close to a page boundary, add an additional page to hold the signature.
(Application signatures on the TI-73 and TI-83 Plus are not allowed to span a page boundary.)
Keep in mind that this is extremely wasteful, as it consumes 16384 bytes of Flash to hold approxi-
mately 69 bytes of data; if your application is in this situation, you should consider trying to
reduce its size slightly, or alternatively, adding more data to take advantage of the extra Flash page.

-q Do not print non-fatal warning messages.

-r Re-sign a previously signed app (i.e., discard the previous signature before signing.)

-R n For signing TI-73 and TI-83 Plus applications, use root numbern (0 ≤ n ≤ 3) rather than the
default, root number 0. All four roots are valid, though distinct, signatures, so this option is
mainly for debugging.

Root 0 is computed so as to be congruent tom

p+1

4

 modulop andm

q+1

4

 moduloq. Root 1 is the

negation of root 0 modulop, root 2 the negation moduloq, and root 3 the negation both modulop
and moduloq.

This option has no effect when signing OSes or TI-89/92 Plus applications, which use the RSA
algorithm rather than Rabin.

-t type Explicitly specify the type of program (e.g., ‘8xk’ for a TI-83 Plus application, or ‘73u’ for a
TI-73 operating system.) The default behavior is to infer the program type from the name of the
input file. (If the input file does not have a recognized suffix, the type is guessed based on the con-
tents of the program header.)

-u Disable automatic page detection, and assume input files are unsorted.This means that page
boundaries must be defined explicitly. (SeeAPPLICATION FILE FORMATS below.) This
option has no effect in binary (-b) mode.

-v Be verbose; print out the names of apps and their signatures as they are signed.Use-vv for more
detailed information about the computation.

--help Print out a summary of options.

--version
Print out version information.

APPLICATION FILE FORMATS
Intel Hex

Intel hex is a standard ASCII file format used by many PROM programmers, and a common assembler out-
put format. Each line (or ‘‘record’’) consists of the following:

:NNAAAATTDDDDDD...CC

: The first character of the line is a colon; this is just used to identify the format.

NN The next two characters are the number of data bytes on this line, written in uppercase ASCII hex-
adecimal.

AAAA The next four digits are the address of the data on this line.rabbitsign only looks at the low 14
bits of this value.

TT These two digits identify the ‘‘type’’ of the record. Intel hex defines several record types for vari-
ous addressing models; the only types which are meaningful for TI calculators are types 00 (ordi-
nary data) and 01 (end of file.)

RabbitSign 2.0 July 2009 2

rabbitsign(1) rabbitsign(1)

DD... 2*NN hex digits follow, the actual data.

CC Finally, the inverted checksum is added, so that adding up all the bytes on the line gives a total of
zero modulo 256. (As an extension,rabbitsign permits you to use two uppercase ‘X’s in place of
a checksum.)

Since the address is only 16 bits, this format cannot unambiguously represent applications larger than 64
kilobytes. To enable multi-page applications to be created,rabbitsign attempts to detect page boundaries
automatically, starting a new page for each field with a zero address. Thus to create a multi-page app, you
can simply concatenate several Intel Hex files, e.g.

cat page0.hex page1.hex | rabbitsign - -o complete.app

This will only work if the records are correctly sorted within each page. (If the assembler does not generate
records in order, you can sort the fields yourself using a command such as ‘sort -k1.8,1.9 -k1.4,1.7’.)

To turn off this automatic page detection, use the-u option. Inthis case, you must define page boundaries
explicitly using the TI Hex format.

TI Hex
‘‘ TI’ ’ hex is an extension to Intel hex which provides unambiguous representation of multi-page apps.It
adds records of the form

:0200000200NNCC

which indicate that subsequent data is placed on relative page numberNN. (Keep in mind that the TI-83
and 84 Plus install applications ‘‘backwards,’’ so if relative page 0 is stored on absolute page 69, relative
page 1 will be stored on absolute page 68, and so forth.)

Some assemblers can generate multi-page data using type 4 records instead of type 2;rabbitsign treats
these as equivalent to type 2.

For compatibility with other software which makes certain assumptions about the format,rabbitsign will
write 32 bytes per line, and will end lines with a DOS-style carriage return and line feed.

GraphLink TIFL
The standard (newer) GraphLink format consists of a 78-byte binary header which is added to the start of a
hex or binary file. The contents of this header are as follows:

0x00-07
The string ‘**TIFL**’.

0x08 Themajor version number (‘‘A pp ID’’) of the application.

0x09 Theminor version number (‘‘A pp Build’’) of the application.

0x0A Flags;apparently intended to indicate whether the contents of the file are binary (0) or TI Hex (1).
This value is not, however, set consistently by other software.

0x0B ‘‘Object Type’’ fi eld; apparently indicates something about the type of data. Set to 0x88 in most
TI-73 and TI-83 Plus files; set to 0 in TI-89 and TI-92 Plus files.

0x0C-0F
Binary-coded decimal month (one byte), day (one byte), and year (two bytes, big endian) when the
app was signed.

0x10 Lengthof the app’s name.

RabbitSign 2.0 July 2009 3

rabbitsign(1) rabbitsign(1)

0x11-18
Name of the app.

0x19-2F
Reserved, always set to zero.

0x30 Calculatortype (0x73 = TI-83 Plus, 0x74 = TI-73, 0x88 = TI-92 Plus, 0x98 = TI-89.)

0x31 Type of data (0x23 = OS upgrade, 0x24 = application, 0x25 = certificate.)

0x32-49
Reserved, always set to zero.

0x4A-4D
Little endian length of the following data (the length of the hex file, not the on-calculator size of
the application.)

There also exist multi-part TIFL files, which simply consist of two or more TIFL files concatentated
together. (For instance, a software license agreement or a certificate file can be attached to an application.)
rabbitsign handles these files in a limited way: it will read only the first section with a recognized data
type, ignoring any other data in the file.rabbitsign cannot create multi-part TIFL files, but they can be cre-
ated usingpackxxk(1) (or simply usingcat(1).)

Binary
rabbitsign can also read binary app files; they are assumed to be contiguous, so when signing a multi-page
app, each page except the last must be filled to a full 16k.

KEY FILE FORMATS
Ke y files contain the data needed for signing and validating applications. (The portion of the key file used
for validating is known as the ‘‘public’’ key; the portion used for signing is the ‘‘private’’ key. Only the
public key is stored on the calculator itself.)Official key files from TI come in two varieties, known as
‘‘ Rabin’’ and ‘‘RSA’’ f ormats. Notethatrabbitsign currently supports using Rabin-type key files to gener-
ate RSA signatures, but not the other way around.

Rabin key format
The Rabin key file format is typically used for TI-73 and TI-83 Plus application signing keys. It consists of
three lines, each containing a big integer. The first line is the public key, n; the second and third are its two
factors,p andq.

Each line begins with two hexadecimal digits, giving the length of the number in bytes, followed by the
bytes themselves, written in hexadecimal in little-endian order.

RSA key format
The RSA key file format is typically used for TI-89 and TI-92 Plus application signing keys. It consists of
three lines: the key ID, the public key n, and the signing exponentd. (d is the inverse of the validation
exponent, 17, moduloφ(n), and thus calculatingd is computationally equivalent to factoringn.)

The key ID is a short hexadecimal number, which should match the contents of the 811x header field.The
numbersn andd are written as big integers, as in the Rabin key format.

FILES
/usr/local/share/rabbitsign/*.key

Private key files which will be used if the requested key is not found in the current directory.

RabbitSign 2.0 July 2009 4

rabbitsign(1) rabbitsign(1)

BUGS
Who needs them?

rabbitsign accepts keys, applications, and even file names which cause TI’s programs to crash or generate
invalid signatures.

Some apps which come very close to filling the last page may not be usable with TI-Connect.This is a bug
in TI-Connect.Try TiLP.

rabbitsign does not always generate the same signature as do TI’s programs. Thisis not a bug; it is simply
due to the differences in implementation. There are in fact four valid signatures for every application hash;
all four are accepted by the calculator.

If you encounter a valid app whichrabbitsign is unable to sign, or worse, generates an invalid signature,
this is a serious bug, and I would like to know about it.

SEE ALSO
packxxk(1), rskeygen(1)

AUTHOR
Benjamin Moody <floppusmaximus@users.sf.net>

RabbitSign 2.0 July 2009 5

